光電倍增管
編輯
光電倍增管與閃爍體(scintillator)耦合工作示意圖。
光電倍增管是一種極為靈敏的感光真空管,內部裝置了一個光電陰極 (photocathode)、幾個倍增極(dynode)與一個陽極。位於真空管一端窗口的光電陰極是具有特別低逸出功性質的沉積薄膜,每當光子穿過窗口入射於光電陰極時,會因光電效應很容易地發射出光電子。藉著一系列電位越來越高的倍增極,光電子會被加速,並且通過二次發射,電子數量會急遽增多,在陽極形成可偵測的電流。光電倍增管常用於偵測輻照度非常微弱的光束,是功能優良的測量儀器。[28]:177-185
金箔驗電器
編輯
金箔驗電器示意圖。
金箔驗電器可以用來偵測靜電。置放於金屬頂帽的電荷會移動至金屬桿與金箔。由於同性相斥,金屬桿與金箔會互相排斥,因此,金箔的下端會與金屬桿分開,從兩者分開的程度,可以估量電性大小。
金箔驗電器是一種演示光電效應的教育工具。例如,假設驗電器帶有負電,有很多額外電子,金箔的下端與金屬桿分開。假若照射高頻率光束於金屬頂帽,超過其極限頻率,造成光電效應,光電子會被發射出去,因此,驗電器會放電,金箔的下端會漸漸掉落,與金屬桿閉合,呈電中性。持續照射動作,會使得驗電器變為帶有正電,由於同性相斥,金箔的下端與金屬桿又會分開。假若,光束頻率低於金屬頂帽的極限頻率,則不會發生光電效應,不論照射光束多久時間,金屬頂帽永遠不會放電。[29]:389-390
光電子能譜學
編輯
單色X射線光電子能譜系統的基本組件: *樣品通常為固體,因為整個系統處於超高真空(<10-8 torr)。 *聚焦的X射線能量約為1.5keV。 *光電子只能從樣品離表面70-110Å的最上層區域逃逸,能量小於1.5keV。 *電子能量分析器專門測量電子的能量,操作值域為0~1.5keV。 *電子探測器計算電子數量。
光電子能譜學(photoelectron spectroscopy)量度固體、氣體、液體樣品因被光束照射而發射出的光電子的動能。[30]從光子能量
h
ν
{\displaystyle h\nu }
、光電子動能
E
{\displaystyle E}
、樣品逸出功
W
0
{\displaystyle W_{0}}
,可以得到電子在樣品裏的結合能
E
B
{\displaystyle E_{B}}
:[31]:4-5
E
B
=
h
ν
−
E
−
W
0
{\displaystyle E_{B}=h\nu -E-W_{0}}
。
在光電子能譜學發展成功之前,關於這類的數據很少,尤其是內層電子的結合能。[32]
光電子能譜學實驗通常需要在高真空內完成,否則,光電子很容易會被氣體分子散射。光束源可以是X射線管、氣體放電燈、同步輻射源等等。[31]:14-20依據照射光束的頻率,光電子能譜學又分為X射線光電子能譜學、紫外光電子能譜學等等。不論照射光束頻率為何,每一種光電子能譜學的中心論題都是量度光電子能量做表面分析。[33]
太空飛行器
編輯
由於光電效應,暴露於太陽輻射的太空飛行器會累積正電荷,這現象稱為空間電荷累積(space charging)。電性不平衡偶而會因為放電而損壞易毀的電子儀器,但時常會影響某些測量結果的準確性,例如,電漿密度、電漿分佈函數、電場等等。但是,這些靜電問題都具有自我限制性質,因為電壓高的物體比較不容易發射出光電子。[34]
有時候,暴露於太陽輻射的太空飛行器會累積正電荷。主要原因是面對太陽部分與背對太陽部分之間的「差異電荷累積」(differential charging)。背對太陽部分會從周圍的電漿獲得負電荷,所產生的電場會包抄到面對太陽部分,形成一個電位壘,抑遏光電子發射機制。另外一個原因是具有高反光率(reflectance)的表面物質會強烈反射太陽輻射,因此降低光電效應。[35]
月球塵
編輯
陽光照射到月球表面與月球塵,會因為光電效應,促使它們帶有正電荷,因此月球塵會被月球表面排斥,靜電懸浮(electrostatic levitation)於月球表面上方幾公尺高區域,懸浮在月球空中好似「大塵層」,從遠處觀察,可以看到一層薄薄的灰霾,迢遙的月球輪廓因此變得模糊不清,落日後,依舊可以在地平面上方看到暗淡的曙暮光。這現象最先被1960年代測量員計畫拍攝存證。根據「動力學噴泉模型」(dynamic fountain model),在獲得電荷與釋出電荷的循環過程中,月球塵粒子像噴泉般地移動[36][37]。
夜視儀
編輯
夜視儀的最核心組件是影像管(image intensifier tube),這是一種電光裝置(electro-optic device),能夠將各種不同波長的微弱光波變換為可視的不同輻照度單色光波。在影像管裏,假設光子撞擊到光陽極(photocathode)的鹼金屬薄膜或像砷化鎵一類的半導體物質,則因光電效應,光電子被發射出來,這些光電子會被靜電場加速,然後撞擊到螢光屏,又產生光子。信號加強的達成是靠著電子加速或使用微通道板一類裝置通過二次發射促使增加電子數量。有時候,兩種方法都會一起並用。
為了產生光電效應,當光子被電子吸收後,必須有足夠能量將電子從物質的導帶移至真空能級(vacuum level),這動作需要用到額外能量來克服光陽極的電子親合勢,除了禁帶以外,這是另外一種阻礙光電子發射的勢壘,這在能帶間隙模型(band gap model)裏有詳細說明。有些像砷化鎵一類的物質,其有效電子親合勢低於導帶的能級。對於這種物質,移動到導帶的電子有足夠能量被發射出來,成為光電子。這種物質可以製成很厚的薄膜來吸收光子。這種物質稱為「負電子親合勢」物質。[38]